Copied to
clipboard

G = C22×D24order 192 = 26·3

Direct product of C22 and D24

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C22×D24, C249C23, D124C23, C12.55C24, C23.66D12, (C2×C6)⋊6D8, C61(C2×D8), (C2×C8)⋊33D6, C31(C22×D8), C88(C22×S3), (C22×C8)⋊11S3, C4.45(C2×D12), (C2×C24)⋊44C22, (C22×C24)⋊11C2, (C2×C12).391D4, C12.290(C2×D4), (C2×C4).100D12, C4.52(S3×C23), C6.22(C22×D4), (C22×D12)⋊11C2, (C2×D12)⋊48C22, C2.24(C22×D12), (C22×C4).459D6, C22.70(C2×D12), (C22×C6).145D4, (C2×C12).787C23, (C22×C12).526C22, (C2×C6).178(C2×D4), (C2×C4).736(C22×S3), SmallGroup(192,1299)

Series: Derived Chief Lower central Upper central

C1C12 — C22×D24
C1C3C6C12D12C2×D12C22×D12 — C22×D24
C3C6C12 — C22×D24
C1C23C22×C4C22×C8

Generators and relations for C22×D24
 G = < a,b,c,d | a2=b2=c24=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 1240 in 338 conjugacy classes, 127 normal (13 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, D4, C23, C23, C12, C12, D6, C2×C6, C2×C8, D8, C22×C4, C2×D4, C24, C24, D12, D12, C2×C12, C22×S3, C22×C6, C22×C8, C2×D8, C22×D4, D24, C2×C24, C2×D12, C2×D12, C22×C12, S3×C23, C22×D8, C2×D24, C22×C24, C22×D12, C22×D24
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2×D4, C24, D12, C22×S3, C2×D8, C22×D4, D24, C2×D12, S3×C23, C22×D8, C2×D24, C22×D12, C22×D24

Smallest permutation representation of C22×D24
On 96 points
Generators in S96
(1 38)(2 39)(3 40)(4 41)(5 42)(6 43)(7 44)(8 45)(9 46)(10 47)(11 48)(12 25)(13 26)(14 27)(15 28)(16 29)(17 30)(18 31)(19 32)(20 33)(21 34)(22 35)(23 36)(24 37)(49 79)(50 80)(51 81)(52 82)(53 83)(54 84)(55 85)(56 86)(57 87)(58 88)(59 89)(60 90)(61 91)(62 92)(63 93)(64 94)(65 95)(66 96)(67 73)(68 74)(69 75)(70 76)(71 77)(72 78)
(1 89)(2 90)(3 91)(4 92)(5 93)(6 94)(7 95)(8 96)(9 73)(10 74)(11 75)(12 76)(13 77)(14 78)(15 79)(16 80)(17 81)(18 82)(19 83)(20 84)(21 85)(22 86)(23 87)(24 88)(25 70)(26 71)(27 72)(28 49)(29 50)(30 51)(31 52)(32 53)(33 54)(34 55)(35 56)(36 57)(37 58)(38 59)(39 60)(40 61)(41 62)(42 63)(43 64)(44 65)(45 66)(46 67)(47 68)(48 69)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 73)(2 96)(3 95)(4 94)(5 93)(6 92)(7 91)(8 90)(9 89)(10 88)(11 87)(12 86)(13 85)(14 84)(15 83)(16 82)(17 81)(18 80)(19 79)(20 78)(21 77)(22 76)(23 75)(24 74)(25 56)(26 55)(27 54)(28 53)(29 52)(30 51)(31 50)(32 49)(33 72)(34 71)(35 70)(36 69)(37 68)(38 67)(39 66)(40 65)(41 64)(42 63)(43 62)(44 61)(45 60)(46 59)(47 58)(48 57)

G:=sub<Sym(96)| (1,38)(2,39)(3,40)(4,41)(5,42)(6,43)(7,44)(8,45)(9,46)(10,47)(11,48)(12,25)(13,26)(14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,33)(21,34)(22,35)(23,36)(24,37)(49,79)(50,80)(51,81)(52,82)(53,83)(54,84)(55,85)(56,86)(57,87)(58,88)(59,89)(60,90)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,73)(68,74)(69,75)(70,76)(71,77)(72,78), (1,89)(2,90)(3,91)(4,92)(5,93)(6,94)(7,95)(8,96)(9,73)(10,74)(11,75)(12,76)(13,77)(14,78)(15,79)(16,80)(17,81)(18,82)(19,83)(20,84)(21,85)(22,86)(23,87)(24,88)(25,70)(26,71)(27,72)(28,49)(29,50)(30,51)(31,52)(32,53)(33,54)(34,55)(35,56)(36,57)(37,58)(38,59)(39,60)(40,61)(41,62)(42,63)(43,64)(44,65)(45,66)(46,67)(47,68)(48,69), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,73)(2,96)(3,95)(4,94)(5,93)(6,92)(7,91)(8,90)(9,89)(10,88)(11,87)(12,86)(13,85)(14,84)(15,83)(16,82)(17,81)(18,80)(19,79)(20,78)(21,77)(22,76)(23,75)(24,74)(25,56)(26,55)(27,54)(28,53)(29,52)(30,51)(31,50)(32,49)(33,72)(34,71)(35,70)(36,69)(37,68)(38,67)(39,66)(40,65)(41,64)(42,63)(43,62)(44,61)(45,60)(46,59)(47,58)(48,57)>;

G:=Group( (1,38)(2,39)(3,40)(4,41)(5,42)(6,43)(7,44)(8,45)(9,46)(10,47)(11,48)(12,25)(13,26)(14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,33)(21,34)(22,35)(23,36)(24,37)(49,79)(50,80)(51,81)(52,82)(53,83)(54,84)(55,85)(56,86)(57,87)(58,88)(59,89)(60,90)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,73)(68,74)(69,75)(70,76)(71,77)(72,78), (1,89)(2,90)(3,91)(4,92)(5,93)(6,94)(7,95)(8,96)(9,73)(10,74)(11,75)(12,76)(13,77)(14,78)(15,79)(16,80)(17,81)(18,82)(19,83)(20,84)(21,85)(22,86)(23,87)(24,88)(25,70)(26,71)(27,72)(28,49)(29,50)(30,51)(31,52)(32,53)(33,54)(34,55)(35,56)(36,57)(37,58)(38,59)(39,60)(40,61)(41,62)(42,63)(43,64)(44,65)(45,66)(46,67)(47,68)(48,69), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,73)(2,96)(3,95)(4,94)(5,93)(6,92)(7,91)(8,90)(9,89)(10,88)(11,87)(12,86)(13,85)(14,84)(15,83)(16,82)(17,81)(18,80)(19,79)(20,78)(21,77)(22,76)(23,75)(24,74)(25,56)(26,55)(27,54)(28,53)(29,52)(30,51)(31,50)(32,49)(33,72)(34,71)(35,70)(36,69)(37,68)(38,67)(39,66)(40,65)(41,64)(42,63)(43,62)(44,61)(45,60)(46,59)(47,58)(48,57) );

G=PermutationGroup([[(1,38),(2,39),(3,40),(4,41),(5,42),(6,43),(7,44),(8,45),(9,46),(10,47),(11,48),(12,25),(13,26),(14,27),(15,28),(16,29),(17,30),(18,31),(19,32),(20,33),(21,34),(22,35),(23,36),(24,37),(49,79),(50,80),(51,81),(52,82),(53,83),(54,84),(55,85),(56,86),(57,87),(58,88),(59,89),(60,90),(61,91),(62,92),(63,93),(64,94),(65,95),(66,96),(67,73),(68,74),(69,75),(70,76),(71,77),(72,78)], [(1,89),(2,90),(3,91),(4,92),(5,93),(6,94),(7,95),(8,96),(9,73),(10,74),(11,75),(12,76),(13,77),(14,78),(15,79),(16,80),(17,81),(18,82),(19,83),(20,84),(21,85),(22,86),(23,87),(24,88),(25,70),(26,71),(27,72),(28,49),(29,50),(30,51),(31,52),(32,53),(33,54),(34,55),(35,56),(36,57),(37,58),(38,59),(39,60),(40,61),(41,62),(42,63),(43,64),(44,65),(45,66),(46,67),(47,68),(48,69)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,73),(2,96),(3,95),(4,94),(5,93),(6,92),(7,91),(8,90),(9,89),(10,88),(11,87),(12,86),(13,85),(14,84),(15,83),(16,82),(17,81),(18,80),(19,79),(20,78),(21,77),(22,76),(23,75),(24,74),(25,56),(26,55),(27,54),(28,53),(29,52),(30,51),(31,50),(32,49),(33,72),(34,71),(35,70),(36,69),(37,68),(38,67),(39,66),(40,65),(41,64),(42,63),(43,62),(44,61),(45,60),(46,59),(47,58),(48,57)]])

60 conjugacy classes

class 1 2A···2G2H···2O 3 4A4B4C4D6A···6G8A···8H12A···12H24A···24P
order12···22···2344446···68···812···1224···24
size11···112···12222222···22···22···22···2

60 irreducible representations

dim1111222222222
type+++++++++++++
imageC1C2C2C2S3D4D4D6D6D8D12D12D24
kernelC22×D24C2×D24C22×C24C22×D12C22×C8C2×C12C22×C6C2×C8C22×C4C2×C6C2×C4C23C22
# reps112121316186216

Matrix representation of C22×D24 in GL7(𝔽73)

72000000
07200000
00720000
0001000
0000100
0000010
0000001
,
1000000
0100000
0010000
00072000
00007200
0000010
0000001
,
72000000
057160000
057570000
00033400
000564000
00000172
0000010
,
72000000
0100000
00720000
00072000
00053100
00000720
00000721

G:=sub<GL(7,GF(73))| [72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[72,0,0,0,0,0,0,0,57,57,0,0,0,0,0,16,57,0,0,0,0,0,0,0,33,56,0,0,0,0,0,4,40,0,0,0,0,0,0,0,1,1,0,0,0,0,0,72,0],[72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,72,53,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,1] >;

C22×D24 in GAP, Magma, Sage, TeX

C_2^2\times D_{24}
% in TeX

G:=Group("C2^2xD24");
// GroupNames label

G:=SmallGroup(192,1299);
// by ID

G=gap.SmallGroup(192,1299);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,675,192,1684,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^24=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽